Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 77 tok/s
Gemini 2.5 Pro 56 tok/s Pro
GPT-5 Medium 33 tok/s Pro
GPT-5 High 21 tok/s Pro
GPT-4o 107 tok/s Pro
Kimi K2 196 tok/s Pro
GPT OSS 120B 436 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

$Δ$-Machine Learning to Elevate DFT-based Potentials and a Force Field to the CCSD(T) Level Illustrated for Ethanol (2407.20050v1)

Published 29 Jul 2024 in physics.chem-ph

Abstract: Progress in machine learning has facilitated the development of potentials that offer both the accuracy of first-principles techniques and vast increases in the speed of evaluation. Recently,"$\Delta$-machine learning" has been used to elevate the quality of a potential energy surface (PES) based on low-level, e.g., density functional theory (DFT) energies and gradients to close to the gold-standard coupled cluster level of accuracy. We have demonstrated the success of this approach for molecules, ranging in size from H$_3$O$+$ to 15-atom acetyl-acetone and tropolone. These were all done using the B3LYP functional. Here we investigate the generality of this approach for the PBE, M06, M06-2X, and PBE0+MBD functionals, using ethanol as the example molecule. Linear regression with permutationally invariant polynomials is used to fit both low-level and correction PESs. These PESs are employed for standard RMSE analysis for training and test datasets, and then general fidelity tests such as energetics of stationary points, normal mode frequencies, and torsional potentials are examined. We achieve similar improvements in all cases. Interestingly, we obtained significant improvement over DFT gradients where coupled cluster gradients were not used to correct the low-level PES. Finally, we present some results for correcting a recent molecular mechanics force field for ethanol and comment on the possible generality of this approach.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.