Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
157 tokens/sec
GPT-4o
43 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Fairness Through Controlled (Un)Awareness in Node Embeddings (2407.20024v1)

Published 29 Jul 2024 in cs.SI and cs.CY

Abstract: Graph representation learning is central for the application of ML models to complex graphs, such as social networks. Ensuring `fair' representations is essential, due to the societal implications and the use of sensitive personal data. In this paper, we demonstrate how the parametrization of the \emph{CrossWalk} algorithm influences the ability to infer a sensitive attributes from node embeddings. By fine-tuning hyperparameters, we show that it is possible to either significantly enhance or obscure the detectability of these attributes. This functionality offers a valuable tool for improving the fairness of ML systems utilizing graph embeddings, making them adaptable to different fairness paradigms.

Summary

We haven't generated a summary for this paper yet.