Papers
Topics
Authors
Recent
2000 character limit reached

Blind Acoustic Parameter Estimation Through Task-Agnostic Embeddings Using Latent Approximations

Published 29 Jul 2024 in eess.AS | (2407.19989v1)

Abstract: We present a method for blind acoustic parameter estimation from single-channel reverberant speech. The method is structured into three stages. In the first stage, a variational auto-encoder is trained to extract latent representations of acoustic impulse responses represented as mel-spectrograms. In the second stage, a separate speech encoder is trained to estimate low-dimensional representations from short segments of reverberant speech. Finally, the pre-trained speech encoder is combined with a small regression model and evaluated on two parameter regression tasks. Experimentally, the proposed method is shown to outperform a fully end-to-end trained baseline model.

Citations (1)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.