Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Contextuality Helps Representation Learning for Generalized Category Discovery (2407.19752v1)

Published 29 Jul 2024 in cs.CV

Abstract: This paper introduces a novel approach to Generalized Category Discovery (GCD) by leveraging the concept of contextuality to enhance the identification and classification of categories in unlabeled datasets. Drawing inspiration from human cognition's ability to recognize objects within their context, we propose a dual-context based method. Our model integrates two levels of contextuality: instance-level, where nearest-neighbor contexts are utilized for contrastive learning, and cluster-level, employing prototypical contrastive learning based on category prototypes. The integration of the contextual information effectively improves the feature learning and thereby the classification accuracy of all categories, which better deals with the real-world datasets. Different from the traditional semi-supervised and novel category discovery techniques, our model focuses on a more realistic and challenging scenario where both known and novel categories are present in the unlabeled data. Extensive experimental results on several benchmark data sets demonstrate that the proposed model outperforms the state-of-the-art. Code is available at: https://github.com/Clarence-CV/Contexuality-GCD

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Github Logo Streamline Icon: https://streamlinehq.com
X Twitter Logo Streamline Icon: https://streamlinehq.com