Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

WorkR: Occupation Inference for Intelligent Task Assistance (2407.18518v1)

Published 26 Jul 2024 in cs.LG

Abstract: Occupation information can be utilized by digital assistants to provide occupation-specific personalized task support, including interruption management, task planning, and recommendations. Prior research in the digital workplace assistant domain requires users to input their occupation information for effective support. However, as many individuals switch between multiple occupations daily, current solutions falter without continuous user input. To address this, this study introduces WorkR, a framework that leverages passive sensing to capture pervasive signals from various task activities, addressing three challenges: the lack of a passive sensing architecture, personalization of occupation characteristics, and discovering latent relationships among occupation variables. We argue that signals from application usage, movements, social interactions, and the environment can inform a user's occupation. WorkR uses a Variational Autoencoder (VAE) to derive latent features for training models to infer occupations. Our experiments with an anonymized, context-rich activity and task log dataset demonstrate that our models can accurately infer occupations with more than 91% accuracy across six ISO occupation categories.

Summary

We haven't generated a summary for this paper yet.