Papers
Topics
Authors
Recent
Search
2000 character limit reached

An Iterative Approach to Topic Modelling

Published 25 Jul 2024 in cs.LG and cs.AI | (2407.17892v1)

Abstract: Topic modelling has become increasingly popular for summarizing text data, such as social media posts and articles. However, topic modelling is usually completed in one shot. Assessing the quality of resulting topics is challenging. No effective methods or measures have been developed for assessing the results or for making further enhancements to the topics. In this research, we propose we propose to use an iterative process to perform topic modelling that gives rise to a sense of completeness of the resulting topics when the process is complete. Using the BERTopic package, a popular method in topic modelling, we demonstrate how the modelling process can be applied iteratively to arrive at a set of topics that could not be further improved upon using one of the three selected measures for clustering comparison as the decision criteria. This demonstration is conducted using a subset of the COVIDSenti-A dataset. The early success leads us to believe that further research using in using this approach in conjunction with other topic modelling algorithms could be viable.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 2 tweets with 1 like about this paper.