Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Lossy Data Compression By Adaptive Mesh Coarsening (2407.17316v1)

Published 24 Jul 2024 in cs.DC

Abstract: Today's scientific simulations, for example in the high-performance exascale sector, produce huge amounts of data. Due to limited I/O bandwidth and available storage space, there is the necessity to reduce scientific data of high performance computing applications. Error-bounded lossy compression has been proven to be an effective approach tackling the trade-off between accuracy and storage space. Within this work, we are exploring and discussing error-bounded lossy compression solely based on adaptive mesh refinement techniques. This compression technique is not only easily integrated into existing adaptive mesh refinement applications but also suits as a general lossy compression approach for arbitrary data in form of multi-dimensional arrays, irrespective of the data type. Moreover, these techniques permit the exclusion of regions of interest and even allows for nested error domains during the compression. The described data compression technique is presented exemplary on ERA5 data.

Summary

We haven't generated a summary for this paper yet.