Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Implementing engrams from a machine learning perspective: the relevance of a latent space (2407.16616v1)

Published 23 Jul 2024 in cs.NE and cs.AI

Abstract: In our previous work, we proposed that engrams in the brain could be biologically implemented as autoencoders over recurrent neural networks. These autoencoders would comprise basic excitatory/inhibitory motifs, with credit assignment deriving from a simple homeostatic criterion. This brief note examines the relevance of the latent space in these autoencoders. We consider the relationship between the dimensionality of these autoencoders and the complexity of the information being encoded. We discuss how observed differences between species in their connectome could be linked to their cognitive capacities. Finally, we link this analysis with a basic but often overlooked fact: human cognition is likely limited by our own brain structure. However, this limitation does not apply to machine learning systems, and we should be aware of the need to learn how to exploit this augmented vision of the nature.

Summary

We haven't generated a summary for this paper yet.