Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Sets of autoencoders with shared latent spaces (1811.02373v1)

Published 6 Nov 2018 in cs.CV and cs.LG

Abstract: Autoencoders receive latent models of input data. It was shown in recent works that they also estimate probability density functions of the input. This fact makes using the Bayesian decision theory possible. If we obtain latent models of input data for each class or for some points in the space of parameters in a parameter estimation task, we are able to estimate likelihood functions for those classes or points in parameter space. We show how the set of autoencoders solves the recognition problem. Each autoencoder describes its own model or context, a latent vector that presents input data in the latent space may be called treatment in its context. Sharing latent spaces of autoencoders gives a very important property that is the ability to separate treatment and context where the input information is treated through the set of autoencoders. There are two remarkable and most valuable results of this work: a mechanism that shows a possible way of forming abstract concepts and a way of reducing dataset's size during training. These results are confirmed by tests presented in the article.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (1)
  1. Vasily Morzhakov (2 papers)

Summary

We haven't generated a summary for this paper yet.