Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
41 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
41 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

HAPFI: History-Aware Planning based on Fused Information (2407.16533v1)

Published 23 Jul 2024 in cs.AI and cs.RO

Abstract: Embodied Instruction Following (EIF) is a task of planning a long sequence of sub-goals given high-level natural language instructions, such as "Rinse a slice of lettuce and place on the white table next to the fork". To successfully execute these long-term horizon tasks, we argue that an agent must consider its past, i.e., historical data, when making decisions in each step. Nevertheless, recent approaches in EIF often neglects the knowledge from historical data and also do not effectively utilize information across the modalities. To this end, we propose History-Aware Planning based on Fused Information (HAPFI), effectively leveraging the historical data from diverse modalities that agents collect while interacting with the environment. Specifically, HAPFI integrates multiple modalities, including historical RGB observations, bounding boxes, sub-goals, and high-level instructions, by effectively fusing modalities via our Mutually Attentive Fusion method. Through experiments with diverse comparisons, we show that an agent utilizing historical multi-modal information surpasses all the compared methods that neglect the historical data in terms of action planning capability, enabling the generation of well-informed action plans for the next step. Moreover, we provided qualitative evidence highlighting the significance of leveraging historical multi-modal data, particularly in scenarios where the agent encounters intermediate failures, showcasing its robust re-planning capabilities.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Sujin jeon (2 papers)
  2. Suyeon Shin (3 papers)
  3. Byoung-Tak Zhang (83 papers)