Papers
Topics
Authors
Recent
Search
2000 character limit reached

Channel-Partitioned Windowed Attention And Frequency Learning for Single Image Super-Resolution

Published 23 Jul 2024 in cs.CV | (2407.16232v2)

Abstract: Recently, window-based attention methods have shown great potential for computer vision tasks, particularly in Single Image Super-Resolution (SISR). However, it may fall short in capturing long-range dependencies and relationships between distant tokens. Additionally, we find that learning on spatial domain does not convey the frequency content of the image, which is a crucial aspect in SISR. To tackle these issues, we propose a new Channel-Partitioned Attention Transformer (CPAT) to better capture long-range dependencies by sequentially expanding windows along the height and width of feature maps. In addition, we propose a novel Spatial-Frequency Interaction Module (SFIM), which incorporates information from spatial and frequency domains to provide a more comprehensive information from feature maps. This includes information about the frequency content and enhances the receptive field across the entire image. Experimental findings show the effectiveness of our proposed modules and architecture. In particular, CPAT surpasses current state-of-the-art methods by up to 0.31dB at x2 SR on Urban100.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 1 tweet with 1 like about this paper.