Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Pixel Embedding: Fully Quantized Convolutional Neural Network with Differentiable Lookup Table (2407.16174v1)

Published 23 Jul 2024 in cs.LG, cs.AI, and cs.CV

Abstract: By quantizing network weights and activations to low bitwidth, we can obtain hardware-friendly and energy-efficient networks. However, existing quantization techniques utilizing the straight-through estimator and piecewise constant functions face the issue of how to represent originally high-bit input data with low-bit values. To fully quantize deep neural networks, we propose pixel embedding, which replaces each float-valued input pixel with a vector of quantized values by using a lookup table. The lookup table or low-bit representation of pixels is differentiable and trainable by backpropagation. Such replacement of inputs with vectors is similar to word embedding in the natural language processing field. Experiments on ImageNet and CIFAR-100 show that pixel embedding reduces the top-5 error gap caused by quantizing the floating points at the first layer to only 1% for the ImageNet dataset, and the top-1 error gap caused by quantizing first and last layers to slightly over 1% for the CIFAR-100 dataset. The usefulness of pixel embedding is further demonstrated by inference time measurements, which demonstrate over 1.7 times speedup compared to floating point precision first layer.

Citations (1)

Summary

We haven't generated a summary for this paper yet.