Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Difflare: Removing Image Lens Flare with Latent Diffusion Model (2407.14746v1)

Published 20 Jul 2024 in cs.CV and eess.IV

Abstract: The recovery of high-quality images from images corrupted by lens flare presents a significant challenge in low-level vision. Contemporary deep learning methods frequently entail training a lens flare removing model from scratch. However, these methods, despite their noticeable success, fail to utilize the generative prior learned by pre-trained models, resulting in unsatisfactory performance in lens flare removal. Furthermore, there are only few works considering the physical priors relevant to flare removal. To address these issues, we introduce Difflare, a novel approach designed for lens flare removal. To leverage the generative prior learned by Pre-Trained Diffusion Models (PTDM), we introduce a trainable Structural Guidance Injection Module (SGIM) aimed at guiding the restoration process with PTDM. Towards more efficient training, we employ Difflare in the latent space. To address information loss resulting from latent compression and the stochastic sampling process of PTDM, we introduce an Adaptive Feature Fusion Module (AFFM), which incorporates the Luminance Gradient Prior (LGP) of lens flare to dynamically regulate feature extraction. Extensive experiments demonstrate that our proposed Difflare achieves state-of-the-art performance in real-world lens flare removal, restoring images corrupted by flare with improved fidelity and perceptual quality. The codes will be released soon.

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com
Youtube Logo Streamline Icon: https://streamlinehq.com