Papers
Topics
Authors
Recent
Search
2000 character limit reached

Difflare: Removing Image Lens Flare with Latent Diffusion Model

Published 20 Jul 2024 in cs.CV and eess.IV | (2407.14746v1)

Abstract: The recovery of high-quality images from images corrupted by lens flare presents a significant challenge in low-level vision. Contemporary deep learning methods frequently entail training a lens flare removing model from scratch. However, these methods, despite their noticeable success, fail to utilize the generative prior learned by pre-trained models, resulting in unsatisfactory performance in lens flare removal. Furthermore, there are only few works considering the physical priors relevant to flare removal. To address these issues, we introduce Difflare, a novel approach designed for lens flare removal. To leverage the generative prior learned by Pre-Trained Diffusion Models (PTDM), we introduce a trainable Structural Guidance Injection Module (SGIM) aimed at guiding the restoration process with PTDM. Towards more efficient training, we employ Difflare in the latent space. To address information loss resulting from latent compression and the stochastic sampling process of PTDM, we introduce an Adaptive Feature Fusion Module (AFFM), which incorporates the Luminance Gradient Prior (LGP) of lens flare to dynamically regulate feature extraction. Extensive experiments demonstrate that our proposed Difflare achieves state-of-the-art performance in real-world lens flare removal, restoring images corrupted by flare with improved fidelity and perceptual quality. The codes will be released soon.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (3)

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 1 tweet with 1 like about this paper.