Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

EarlyMalDetect: A Novel Approach for Early Windows Malware Detection Based on Sequences of API Calls (2407.13355v1)

Published 18 Jul 2024 in cs.CR

Abstract: In this work, we propose EarlyMalDetect, a novel approach for early Windows malware detection based on sequences of API calls. Our approach leverages generative transformer models and attention-guided deep recurrent neural networks to accurately identify and detect patterns of malicious behaviors in the early stage of malware execution. By analyzing the sequences of API calls invoked during execution, the proposed approach can classify executable files (programs) as malware or benign by predicting their behaviors based on a few shots (initial API calls) invoked during execution. EarlyMalDetect can predict and reveal what a malware program is going to perform on the target system before it occurs, which can help to stop it before executing its malicious payload and infecting the system. Specifically, EarlyMalDetect relies on a fine-tuned transformer model based on API calls which has the potential to predict the next API call functions to be used by a malware or benign executable program. Our extensive experimental evaluations show that the proposed approach is highly effective in predicting malware behaviors and can be used as a preventive measure against zero-day threats in Windows systems.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)

Summary

We haven't generated a summary for this paper yet.