Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

The use of the symmetric finite difference in the local binary pattern (symmetric LBP) (2407.13178v1)

Published 18 Jul 2024 in cs.CV, cs.NA, and math.NA

Abstract: The paper provides a mathematical view to the binary numbers presented in the Local Binary Pattern (LBP) feature extraction process. Symmetric finite difference is often applied in numerical analysis to enhance the accuracy of approximations. Then, the paper investigates utilization of the symmetric finite difference in the LBP formulation for face detection and facial expression recognition. It introduces a novel approach that extends the standard LBP, which typically employs eight directional derivatives, to incorporate only four directional derivatives. This approach is named symmetric LBP. The number of LBP features is reduced to 16 from 256 by the use of the symmetric LBP. The study underscores the significance of the number of directions considered in the new approach. Consequently, the results obtained emphasize the importance of the research topic.

Summary

We haven't generated a summary for this paper yet.