Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

CEBench: A Benchmarking Toolkit for the Cost-Effectiveness of LLM Pipelines (2407.12797v1)

Published 20 Jun 2024 in cs.PF and cs.LG

Abstract: Online LLM services such as ChatGPT and Claude 3 have transformed business operations and academic research by effortlessly enabling new opportunities. However, due to data-sharing restrictions, sectors such as healthcare and finance prefer to deploy local LLM applications using costly hardware resources. This scenario requires a balance between the effectiveness advantages of LLMs and significant financial burdens. Additionally, the rapid evolution of models increases the frequency and redundancy of benchmarking efforts. Existing benchmarking toolkits, which typically focus on effectiveness, often overlook economic considerations, making their findings less applicable to practical scenarios. To address these challenges, we introduce CEBench, an open-source toolkit specifically designed for multi-objective benchmarking that focuses on the critical trade-offs between expenditure and effectiveness required for LLM deployments. CEBench allows for easy modifications through configuration files, enabling stakeholders to effectively assess and optimize these trade-offs. This strategic capability supports crucial decision-making processes aimed at maximizing effectiveness while minimizing cost impacts. By streamlining the evaluation process and emphasizing cost-effectiveness, CEBench seeks to facilitate the development of economically viable AI solutions across various industries and research fields. The code and demonstration are available in \url{https://github.com/amademicnoboday12/CEBench}.

Citations (5)

Summary

We haven't generated a summary for this paper yet.

Github Logo Streamline Icon: https://streamlinehq.com