Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

LLM-based query paraphrasing for video search (2407.12341v1)

Published 17 Jul 2024 in cs.MM

Abstract: Text-to-video retrieval answers user queries through search by concepts and embeddings. Limited by the size of the concept bank and the amount of training data, answering queries in the wild is not always effective due to the out-of-vocabulary problem. Furthermore, neither concept-based nor embedding-based search can perform reasoning to consolidate the search results for complex queries mixed with logical and spatial constraints. To address these problems, we leverage LLMs (LLM) to paraphrase the query by text-to-text (T2T), text-to-image (T2I), and image-to-text (I2T) transformations. These transformations rephrase abstract concepts into simple words to address the out-of-vocabulary problem. Furthermore, the complex relationship in a query can be decoupled into simpler sub-queries, yielding better retrieval performance when fusing the search results of these sub-queries. To address the LLM hallucination problem, this paper also proposes a novel consistency-based verification strategy to filter the paraphrased queries that are factually incorrect. Extensive experiments are conducted for ad-hoc video search and known-item search on the TRECVid datasets. We provide empirical insights into how traditionally difficult-to-answer queries can be resolved by query paraphrasing.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
  1. Jiaxin Wu (25 papers)
  2. Chong-Wah Ngo (55 papers)
  3. Wing-Kwong Chan (11 papers)
  4. Sheng-hua Zhong (14 papers)

Summary

We haven't generated a summary for this paper yet.