Papers
Topics
Authors
Recent
2000 character limit reached

Transforming the Challenge of Constructing Low-Discrepancy Point Sets into a Permutation Selection Problem

Published 16 Jul 2024 in cs.CG and math.OC | (2407.11533v1)

Abstract: Low discrepancy point sets have been widely used as a tool to approximate continuous objects by discrete ones in numerical processes, for example in numerical integration. Following a century of research on the topic, it is still unclear how low the discrepancy of point sets can go; in other words, how regularly distributed can points be in a given space. Recent insights using optimization and machine learning techniques have led to substantial improvements in the construction of low-discrepancy point sets, resulting in configurations of much lower discrepancy values than previously known. Building on the optimal constructions, we present a simple way to obtain $L_{\infty}$-optimized placement of points that follow the same relative order as an (arbitrary) input set. Applying this approach to point sets in dimensions 2 and 3 for up to 400 and 50 points, respectively, we obtain point sets whose $L_{\infty}$ star discrepancies are up to 25% smaller than those of the current-best sets, and around 50% better than classical constructions such as the Fibonacci set.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.