Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
194 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Constructing Optimal $L_{\infty}$ Star Discrepancy Sets (2311.17463v2)

Published 29 Nov 2023 in cs.CG, cs.NA, math.NA, and math.OC

Abstract: The $L_{\infty}$ star discrepancy is a very well-studied measure used to quantify the uniformity of a point set distribution. Constructing optimal point sets for this measure is seen as a very hard problem in the discrepancy community. Indeed, optimal point sets are, up to now, known only for $n\leq 6$ in dimension 2 and $n \leq 2$ for higher dimensions. We introduce in this paper mathematical programming formulations to construct point sets with as low $L_{\infty}$ star discrepancy as possible. Firstly, we present two models to construct optimal sets and show that there always exist optimal sets with the property that no two points share a coordinate. Then, we provide possible extensions of our models to other measures, such as the extreme and periodic discrepancies. For the $L_{\infty}$ star discrepancy, we are able to compute optimal point sets for up to 21 points in dimension 2 and for up to 8 points in dimension 3. For $d=2$ and $n\ge 7$ points, these point sets have around a 50% lower discrepancy than the current best point sets, and show a very different structure.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (27)
  1. On the small ball inequality in all dimensions. J. Funct. Anal., 254:2470–2502, 2008.
  2. Fully parallel hyperparameter search: Reshaped space-filling. In Proc. of International Conference on Machine Learning (ICML), volume 119, pages 1338–1348. PMLR, 2020.
  3. Star discrepancy subset selection: Problem formulation and efficient approaches for low dimensions. Journal of Complexity, 70:101645, 2022.
  4. Heuristic approaches to obtain low-discrepancy l∞subscript𝑙l_{\infty}italic_l start_POSTSUBSCRIPT ∞ end_POSTSUBSCRIPT point sets. http://arxiv.org/abs/2306.15276, 2023.
  5. B. Chazelle. The Discrepancy method. Cambridge University Press (Cambridge), 2000.
  6. C. Doerr and F.-M. de Rainville. Constructing low star discrepancy point sets with genetic algorithms. In Proc. of Genetic and Evolutionary Computation Conference (GECCO), pages 789–796. ACM, 2013.
  7. Calculation of discrepancy measures and applications in: W. Chen, A. Srivastav, G. Travaglini (eds.). A Panorama of Discrepancy Theory, Springer, pages 621–678, 2014.
  8. B. Doerr. A lower bound for the discrepancy of a random point set. Journal of Complexity, 30(1):16–20, 2014.
  9. J. Dick and F. Pillichshammer. Digital Nets and Sequences. Cambridge University Press, Cambridge, 2010.
  10. S. Galanti and A. Jung. Low-discrepancy sequences: Monte-Carlo simulation of option prices. J. Deriv, pages 63–83, 1997.
  11. The vc-dimension of axis-parallel boxes on the torus. Journal of Complexity, 68:101600, 2022.
  12. E. Hlawka. Funktionen von beschränkter Variation in der Theorie der Gleichverteilung. Ann. Mat. Pum Appl., 54:325–333, 1961.
  13. A. Hinrichs and J. Oettershagen. Optimal point sets for Quasi-Monte Carlo integration of bivariate periodic functions with bounded mixed derivatives. In Monte Carlo and Quasi-Monte Carlo Methods, 2014.
  14. S. Joe and F.Y. Kuo. Constructing sobol sequences with better two-dimensional projections. SIAM Journal on Scientific Computing, 30(5):2635–2654, 2008.
  15. J.F. Koksma. A general theorem from the theory of the uniform distribution modulo 1. Mathematica B (Zutphen), 1:7–11, 1942/1943.
  16. V.F. Lev. Translations of nets and relationship between supreme and Lksuperscript𝐿𝑘{L}^{k}italic_L start_POSTSUPERSCRIPT italic_k end_POSTSUPERSCRIPT discrepancies. Acta Math. Hung., 12:1–12, 1996.
  17. G. Larcher and F. Pillichshammer. A note on optimal point distributions in [0,1)ssuperscript01𝑠[0,1)^{s}[ 0 , 1 ) start_POSTSUPERSCRIPT italic_s end_POSTSUPERSCRIPT. Journal of Computational and Applied Mathematics, 206(2):977–985, 2007.
  18. J. Matoušek. Geometric discrepancy. 2nd edition, Springer Berlin, 2010.
  19. Quasi-random sequences and their discrepancies. SIAM J. Sci. Comput., 15:1251–1279, 1994.
  20. H. Niederreiter. Discrepancy and convex programming. Ann. Mat. Pura Appl., 93:89–97, 1972.
  21. H. Niederreiter. Random number generation and Quasi-Monte Carlo methods. SIAM CBMS NSF Regional Conf. Series in Applied Mathematics (SIAM, Philadelphia), 1992.
  22. A.B. Owen. Monte Carlo book: The Monte Carlo parts. 2019. https://ziangniu6.github.io/files/qmcstuff.pdf.
  23. MatBuilder: Mastering sampling uniformiy over projections. ACM Transactions on Graphics (proceedings of SIGGRAPH), 2022.
  24. Minimizing the L2subscript𝐿2{L}_{2}italic_L start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT and L∞subscript𝐿{L}_{\infty}italic_L start_POSTSUBSCRIPT ∞ end_POSTSUBSCRIPT star discrepancies of a single point in the unit hypercube. Journal of Computational and Applied Mathematics, 197:282–285, 12 2006.
  25. S. Steinerberger. A non-local functional promoting low-discrepancy point sets. Journal of Complexity, 54:101410, 2019.
  26. The Design and Analysis of Computer Experiments. Springer Series in Statistics, Springer, 2003.
  27. B.E. White. On optimal extreme-discrepancy point sets in the square. Numer. Math., 27:157–164, 1976/1977.
Citations (5)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com