Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 47 tok/s
Gemini 2.5 Pro 37 tok/s Pro
GPT-5 Medium 15 tok/s Pro
GPT-5 High 11 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 195 tok/s Pro
GPT OSS 120B 465 tok/s Pro
Claude Sonnet 4 30 tok/s Pro
2000 character limit reached

Pre-Merger Detection and Characterization of Inspiraling Binary Neutron Stars Derived from Neural Posterior Estimation (2407.10263v1)

Published 14 Jul 2024 in gr-qc, astro-ph.HE, and astro-ph.IM

Abstract: As the sensitivity of the international gravitational wave detector network increases, observing binary neutron star signals will become more common. Moreover, since these signals will be louder, the chances of detecting them before their mergers increase. However, this requires an efficient framework. In this work, we present a machine-learning-based framework capable of detecting and analyzing binary neutron star mergers during their inspiral. Using a residual network to summarize the strain data, we use its output as input to a classifier giving the probability of having a signal in the data, and to a normalizing-flow network to perform neural posterior estimation. We train a network for several maximum frequencies reached by the signal to improve the estimate over time. Our framework shows good results both for detection and characterization, with improved parameter estimation as we get closer to the merger time. Thus, we can effectively evolve the precision of the sky location as the merger draws closer. Such a setup would be important for future multi-messenger searches where one would like to have the most precise information possible, as early as possible.

Citations (1)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com