Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

CUSIDE-array: A Streaming Multi-Channel End-to-End Speech Recognition System with Realistic Evaluations (2407.09807v2)

Published 13 Jul 2024 in eess.AS

Abstract: Recently multi-channel end-to-end (ME2E) ASR systems have emerged. While streaming single-channel end-to-end ASR has been extensively studied, streaming ME2E ASR is limited in exploration. Additionally, recent studies call attention to the gap between in-distribution (ID) and out-of-distribution (OOD) tests and doing realistic evaluations. This paper focuses on two research problems: realizing streaming ME2E ASR and improving OOD generalization. We propose the CUSIDE-array method, which integrates the recent CUSIDE methodology (Chunking, Simulating Future Context and Decoding) into the neural beamformer approach of ME2E ASR. It enables streaming processing of both front-end and back-end with a total latency of 402ms. The CUSIDE-array ME2E models are shown to achieve superior streaming results in both ID and OOD tests. Realistic evaluations confirm the advantage of CUSIDE-array in its capability to consume single-channel data to improve OOD generalization via back-end pre-training and ME2E fine-tuning.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
  1. Xiangzhu Kong (2 papers)
  2. Tianqi Ning (1 paper)
  3. Hao Huang (155 papers)
  4. Zhijian Ou (58 papers)

Summary

We haven't generated a summary for this paper yet.