Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
149 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Optimized Federated Multitask Learning in Mobile Edge Networks: A Hybrid Client Selection and Model Aggregation Approach (2407.09219v1)

Published 12 Jul 2024 in cs.NI

Abstract: We propose clustered federated multitask learning to address statistical challenges in non-independent and identically distributed data across clients. Our approach tackles complexities in hierarchical wireless networks by clustering clients based on data distribution similarities and assigning specialized models to each cluster. These complexities include slower convergence and mismatched model allocation due to hierarchical model aggregation and client selection. The proposed framework features a two-phase client selection and a two-level model aggregation scheme. It ensures fairness and effective participation using greedy and round-robin methods. Our approach significantly enhances convergence speed, reduces training time, and decreases energy consumption by up to 60%, ensuring clients receive models tailored to their specific data needs.

Summary

We haven't generated a summary for this paper yet.