Papers
Topics
Authors
Recent
2000 character limit reached

Implicit Neural Representation for Videos Based on Residual Connection

Published 15 Jun 2024 in cs.CV and eess.IV | (2407.06164v1)

Abstract: Video compression technology is essential for transmitting and storing videos. Many video compression methods reduce information in videos by removing high-frequency components and utilizing similarities between frames. Alternatively, the implicit neural representations (INRs) for videos, which use networks to represent and compress videos through model compression. A conventional method improves the quality of reconstruction by using frame features. However, the detailed representation of the frames can be improved. To improve the quality of reconstructed frames, we propose a method that uses low-resolution frames as residual connection that is considered effective for image reconstruction. Experimental results show that our method outperforms the existing method, HNeRV, in PSNR for 46 of the 49 videos.

Citations (1)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 1 tweet with 0 likes about this paper.