Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

HiNeRV: Video Compression with Hierarchical Encoding-based Neural Representation (2306.09818v3)

Published 16 Jun 2023 in eess.IV and cs.CV

Abstract: Learning-based video compression is currently a popular research topic, offering the potential to compete with conventional standard video codecs. In this context, Implicit Neural Representations (INRs) have previously been used to represent and compress image and video content, demonstrating relatively high decoding speed compared to other methods. However, existing INR-based methods have failed to deliver rate quality performance comparable with the state of the art in video compression. This is mainly due to the simplicity of the employed network architectures, which limit their representation capability. In this paper, we propose HiNeRV, an INR that combines light weight layers with novel hierarchical positional encodings. We employs depth-wise convolutional, MLP and interpolation layers to build the deep and wide network architecture with high capacity. HiNeRV is also a unified representation encoding videos in both frames and patches at the same time, which offers higher performance and flexibility than existing methods. We further build a video codec based on HiNeRV and a refined pipeline for training, pruning and quantization that can better preserve HiNeRV's performance during lossy model compression. The proposed method has been evaluated on both UVG and MCL-JCV datasets for video compression, demonstrating significant improvement over all existing INRs baselines and competitive performance when compared to learning-based codecs (72.3% overall bit rate saving over HNeRV and 43.4% over DCVC on the UVG dataset, measured in PSNR).

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (5)
  1. Ho Man Kwan (10 papers)
  2. Ge Gao (70 papers)
  3. Fan Zhang (686 papers)
  4. Andrew Gower (3 papers)
  5. David Bull (67 papers)
Citations (30)

Summary

We haven't generated a summary for this paper yet.