Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
51 tokens/sec
GPT-4o
60 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
8 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Rethinking Image Compression on the Web with Generative AI (2407.04542v1)

Published 5 Jul 2024 in cs.NI, cs.CV, cs.LG, and eess.IV

Abstract: The rapid growth of the Internet, driven by social media, web browsing, and video streaming, has made images central to the Web experience, resulting in significant data transfer and increased webpage sizes. Traditional image compression methods, while reducing bandwidth, often degrade image quality. This paper explores a novel approach using generative AI to reconstruct images at the edge or client-side. We develop a framework that leverages text prompts and provides additional conditioning inputs like Canny edges and color palettes to a text-to-image model, achieving up to 99.8% bandwidth savings in the best cases and 92.6% on average, while maintaining high perceptual similarity. Empirical analysis and a user study show that our method preserves image meaning and structure more effectively than traditional compression methods, offering a promising solution for reducing bandwidth usage and improving Internet affordability with minimal degradation in image quality.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
  1. Shayan Ali Hassan (1 paper)
  2. Danish Humair (2 papers)
  3. Ihsan Ayyub Qazi (9 papers)
  4. Zafar Ayyub Qazi (6 papers)