Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 92 tok/s
Gemini 2.5 Pro 43 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 20 tok/s Pro
GPT-4o 108 tok/s Pro
Kimi K2 182 tok/s Pro
GPT OSS 120B 453 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Stabilized Time Series Expansions for High-Order Finite Element Solutions of Partial Differential Equations (2407.03339v1)

Published 16 May 2024 in math.NA and cs.NA

Abstract: Over the past decade, Finite Element Method (FEM) has served as a foundational numerical framework for approximating the terms of Time Series Expansion (TSE) as solutions to transient Partial Differential Equation (PDE). However, the application of high-order Finite Element (FE) to certain classes of PDEs, such as diffusion equations and the Navier-Stokes (NS) equations, often leads to numerical instabilities. These instabilities limit the number of valid terms in the series, though the efficiency of time series integration even when resummation techniques like the Borel-Pad\'e-Laplace (BPL) integrators are employed. In this study, we introduce a novel variational formulation for computing the terms of a TSE associated with a given PDE using higher-order FEs. Our approach involves the incorporation of artificial diffusion terms on the left-hand side of the equations corresponding to each power in the series, serving as a stabilization technique. We demonstrate that this method can be interpreted as a minimization of an energy functional, wherein the total variations of the unknowns are considered. Furthermore, we establish that the coefficients of the artificial diffusion for each term in the series obey a recurrence relation, which can be determined by minimizing the condition number of the associated linear system. We highlight the link between the proposed technique and the Discrete Maximum Principle (DMP) of the heat equation. We show, via numerical experiments, how the proposed technique allows having additional valid terms of the series that will be substantial in enlarging the stability domain of the BPL integrators.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

X Twitter Logo Streamline Icon: https://streamlinehq.com