Isogeometric Residual Minimization (iGRM) for Non-Stationary Stokes and Navier-Stokes Problems (2001.00178v2)
Abstract: We show that it is possible to obtain a linear computational cost FEM-based solver for non-stationary Stokes and Navier-Stokes equations. Our method employs a technique developed by Guermond and Minev, which consists of singular perturbation plus a splitting scheme. While the time-integration schemes are implicit, we use finite elements to discretize the spatial counterparts. At each time-step, we solve a PDE having weak-derivatives in one direction only (which allows for the linear computational cost), at the expense of handling strong second-order derivatives of the previous time step solution, on the right-hand side of these PDEs. This motivates the use of smooth functions such as B-splines. For high Reynolds numbers, some of these PDEs become unstable. To deal robustly with these instabilities, we propose to use a residual minimization technique. We test our method on problems having manufactured solutions, as well as on the cavity flow problem.