Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
166 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A finite element method for stochastic diffusion equations using fluctuating hydrodynamics (2312.00022v3)

Published 9 Nov 2023 in math.NA, cs.NA, and physics.comp-ph

Abstract: We present a finite element approach for diffusion problems with thermal fluctuations based on a fluctuating hydrodynamics model. The governing transport equations are stochastic partial differential equations with a fluctuating forcing term. We propose a discrete formulation of the stochastic forcing term that has the correct covariance matrix up to a standard discretization error. Furthermore, to obtain a numerical solution with spatial correlations that converge to those of the continuum equation, we derive a linear mapping to transform the finite element solution into an equivalent discrete solution that is free from the artificial correlations introduced by the spatial discretization. The method is validated by applying it to two diffusion problems: a second-order diffusion equation and a fourth-order diffusion equation. The theoretical (continuum) solution to the first case presents spatially decorrelated fluctuations, while the second case presents fluctuations correlated over a finite length. In both cases, the numerical solution presents a structure factor that approximates well the continuum one.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (46)
  1. L. R. Volpatti and A. K. Yetisen, “Commercialization of microfluidic devices,” Trends Biotechnol, vol. 32, no. 7, pp. 347–350, 2014.
  2. L. Bocquet, “Nanofluidics coming of age,” Nat. Mater., vol. 19, no. 3, pp. 254–256, 2020.
  3. S. Faucher, N. Aluru, M. Z. Bazant, D. Blankschtein, A. H. Brozena, J. Cumings, J. Pedro de Souza, M. Elimelech, R. Epsztein, J. T. Fourkas, et al., “Critical knowledge gaps in mass transport through single-digit nanopores: A review and perspective,” J. Phys. Chem. C, vol. 123, no. 35, pp. 21309–21326, 2019.
  4. A. Lainé, A. Niguès, L. Bocquet, and A. Siria, “Nanotribology of ionic liquids: transition to yielding response in nanometric confinement with metallic surfaces,” Phys. Rev. X, vol. 10, no. 1, p. 011068, 2020.
  5. J. M. O. De Zarate and J. V. Sengers, Hydrodynamic fluctuations in fluids and fluid mixtures. Elsevier, 2006.
  6. A. Donev, J. B. Bell, A. de la Fuente, and A. L. Garcia, “Diffusive transport by thermal velocity fluctuations,” Phys. Rev. Lett., vol. 106, no. 20, p. 204501, 2011.
  7. J.-P. Péraud, A. J. Nonaka, J. B. Bell, A. Donev, and A. L. Garcia, “Fluctuation-enhanced electric conductivity in electrolyte solutions,” Proc. Natl. Acad. Sci. U.S.A., vol. 114, no. 41, pp. 10829–10833, 2017.
  8. H. R. Vutukuri, M. Hoore, C. Abaurrea-Velasco, L. van Buren, A. Dutto, T. Auth, D. A. Fedosov, G. Gompper, and J. Vermant, “Active particles induce large shape deformations in giant lipid vesicles,” Nature, vol. 586, no. 7827, pp. 52–56, 2020.
  9. C. R. Brown, C. Mao, E. Falkovskaia, M. S. Jurica, and H. Boeger, “Linking stochastic fluctuations in chromatin structure and gene expression,” PLoS Biol, vol. 11, no. 8, p. e1001621, 2013.
  10. Elsevier, 2013.
  11. T. Leonard, B. Lander, U. Seifert, and T. Speck, “Stochastic thermodynamics of fluctuating density fields: Non-equilibrium free energy differences under coarse-graining,” J. Chem. Phys., vol. 139, no. 20, 2013.
  12. A. Chaudhri, J. B. Bell, A. L. Garcia, and A. Donev, “Modeling multiphase flow using fluctuating hydrodynamics,” Phys. Rev. E, vol. 90, no. 3, p. 033014, 2014.
  13. J.-P. Péraud, A. Nonaka, A. Chaudhri, J. B. Bell, A. Donev, and A. L. Garcia, “Low Mach number fluctuating hydrodynamics for electrolytes,” Phys. Rev. Fluids, vol. 1, no. 7, p. 074103, 2016.
  14. A. Donev, A. L. Garcia, J.-P. Péraud, A. J. Nonaka, and J. B. Bell, “Fluctuating hydrodynamics and debye-hückel-onsager theory for electrolytes,” Curr. Opin. Electrochem., vol. 13, pp. 1–10, 2019.
  15. P. J. Atzberger, “Spatially adaptive stochastic numerical methods for intrinsic fluctuations in reaction–diffusion systems,” J. Comput. Phys, vol. 229, no. 9, pp. 3474–3501, 2010.
  16. A. K. Bhattacharjee, K. Balakrishnan, A. L. Garcia, J. B. Bell, and A. Donev, “Fluctuating hydrodynamics of multi-species reactive mixtures,” J. Chem. Phys., vol. 142, no. 22, 2015.
  17. C. Kim, A. Nonaka, J. B. Bell, A. L. Garcia, and A. Donev, “Stochastic simulation of reaction-diffusion systems: A fluctuating-hydrodynamics approach,” J. Chem. Phys., vol. 146, no. 12, p. 124110, 2017.
  18. F. Balboa Usabiaga, I. Pagonabarraga, and R. Delgado-Buscalioni, “Inertial coupling for point particle fluctuating hydrodynamics,” J. Comput. Phys, vol. 235, pp. 701–722, 2013.
  19. E. E. Keaveny, “Fluctuating force-coupling method for simulations of colloidal suspensions,” J. Comput. Phys, vol. 269, pp. 61–79, 2014.
  20. B. Delmotte and E. E. Keaveny, “Simulating Brownian suspensions with fluctuating hydrodynamics,” J. Chem. Phys., vol. 143, no. 24, 2015.
  21. M. De Corato, J. Slot, M. Hütter, G. D’Avino, P. L. Maffettone, and M. A. Hulsen, “Finite element formulation of fluctuating hydrodynamics for fluids filled with rigid particles using boundary fitted meshes,” J. Comput. Phys, vol. 316, pp. 632–651, 2016.
  22. B. Sprinkle, A. Donev, A. P. S. Bhalla, and N. Patankar, “Brownian dynamics of fully confined suspensions of rigid particles without Green’s functions,” J. Chem. Phys., vol. 150, no. 16, 2019.
  23. T. A. Westwood, B. Delmotte, and E. E. Keaveny, “A generalised drift-correcting time integration scheme for Brownian suspensions of rigid particles with arbitrary shape,” J. Comput. Phys, vol. 467, p. 111437, 2022.
  24. M. Hütter, M. A. Hulsen, and P. D. Anderson, “Fluctuating viscoelasticity,” J. Nonnewton. Fluid Mech., vol. 256, pp. 42–56, 2018.
  25. M. Hütter, P. D. Olmsted, and D. J. Read, “Fluctuating viscoelasticity based on a finite number of dumbbells,” Eur. Phys. J. E, vol. 43, pp. 1–14, 2020.
  26. R. Tsekov and E. Ruckenstein, “Effect of thermal fluctuations on the stability of draining thin films,” Langmuir, vol. 9, no. 11, pp. 3264–3269, 1993.
  27. J. E. Sprittles, J. Liu, D. A. Lockerby, and T. Grafke, “Rogue nanowaves: A route to film rupture,” Phys. Rev. Fluids, vol. 8, no. 9, p. L092001, 2023.
  28. J. Liu, C. Zhao, D. A. Lockerby, and J. E. Sprittles, “Thermal capillary waves on bounded nanoscale thin films,” Phys. Rev. E, vol. 107, no. 1, p. 015105, 2023.
  29. Y. Wang, J. K. Sigurdsson, E. Brandt, and P. J. Atzberger, “Dynamic implicit-solvent coarse-grained models of lipid bilayer membranes: Fluctuating hydrodynamics thermostat,” Phys. Rev. E, vol. 88, no. 2, p. 023301, 2013.
  30. D. A. Rower, M. Padidar, and P. J. Atzberger, “Surface fluctuating hydrodynamics methods for the drift-diffusion dynamics of particles and microstructures within curved fluid interfaces,” J. Comput. Phys, vol. 455, p. 110994, 2022.
  31. M. Gallo, F. Magaletti, and C. M. Casciola, “Thermally activated vapor bubble nucleation: The Landau-Lifshitz–Van der Waals approach,” Phys. Rev. Fluids, vol. 3, no. 5, p. 053604, 2018.
  32. M. Gallo, F. Magaletti, A. Georgoulas, M. Marengo, J. De Coninck, and C. M. Casciola, “A nanoscale view of the origin of boiling and its dynamics,” Nat. Commun., vol. 14, no. 1, p. 6428, 2023.
  33. D. S. Dean, “Langevin equation for the density of a system of interacting Langevin processes,” J. Phys. A: Math. Gen., vol. 29, no. 24, p. L613, 1996.
  34. A. Donev and E. Vanden-Eijnden, “Dynamic density functional theory with hydrodynamic interactions and fluctuations,” J. Chem. Phys., vol. 140, no. 23, 2014.
  35. A. J. Archer and M. Rauscher, “Dynamical density functional theory for interacting Brownian particles: stochastic or deterministic?,” J. Phys. A, vol. 37, no. 40, p. 9325, 2004.
  36. P.-H. Chavanis, “Generalized stochastic Fokker-Planck Equations,” Entropy, vol. 17, no. 5, pp. 3205–3252, 2015.
  37. P.-H. Chavanis, “The generalized stochastic Smoluchowski equation,” Entropy, vol. 21, no. 10, p. 1006, 2019.
  38. F. Cornalba and J. Fischer, “The Dean–Kawasaki equation and the structure of density fluctuations in systems of diffusing particles,” Arch Ration Mech Anal, vol. 247, no. 5, p. 76, 2023.
  39. S. Delong, B. E. Griffith, E. Vanden-Eijnden, and A. Donev, “Temporal integrators for fluctuating hydrodynamics,” Phys. Rev. E, vol. 87, no. 3, p. 033302, 2013.
  40. A. Donev, E. Vanden-Eijnden, A. Garcia, and J. Bell, “On the accuracy of finite-volume schemes for fluctuating hydrodynamics,” Comm App Math Comp Sci, vol. 5, no. 2, pp. 149–197, 2010.
  41. F. Balboa Usabiaga, J. B. Bell, R. Delgado-Buscalioni, A. Donev, T. G. Fai, B. E. Griffith, and C. S. Peskin, “Staggered schemes for fluctuating hydrodynamics,” Multiscale Model Simul, vol. 10, no. 4, pp. 1369–1408, 2012.
  42. A. Russo, S. P. Perez, M. A. Durán-Olivencia, P. Yatsyshin, J. A. Carrillo, and S. Kalliadasis, “A finite-volume method for fluctuating dynamical density functional theory,” J. Comput. Phys, vol. 428, p. 109796, 2021.
  43. J. de la Torre, P. Español, and A. Donev, “Finite element discretization of non-linear diffusion equations with thermal fluctuations,” J. Chem. Phys., vol. 142, no. 9, p. 094115, 2015.
  44. P. E. Kloeden and E. Platen, Stochastic differential equations. Springer, 1992.
  45. J. de la Torre and P. Español, “Coarse-graining Brownian motion: From particles to a discrete diffusion equation,” J. Chem. Phys., vol. 135, no. 11, p. 114103, 2011.
  46. P. Español and A. Donev, “Coupling a nano-particle with isothermal fluctuating hydrodynamics: Coarse-graining from microscopic to mesoscopic dynamics,” J. Chem. Phys., vol. 143, no. 23, p. 234104, 2015.
Citations (2)

Summary

We haven't generated a summary for this paper yet.