Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Uplifting Lower-Income Data: Strategies for Socioeconomic Perspective Shifts in Large Multi-modal Models (2407.02623v3)

Published 2 Jul 2024 in cs.CY, cs.AI, cs.CL, and cs.CV

Abstract: Recent work has demonstrated that the unequal representation of cultures and socioeconomic groups in training data leads to biased Large Multi-modal (LMM) models. To improve LMM model performance on underrepresented data, we propose and evaluate several prompting strategies using non-English, geographic, and socioeconomic attributes. We show that these geographic and socioeconomic integrated prompts favor retrieving topic appearances commonly found in data from low-income households across different countries leading to improved LMM model performance on lower-income data. Our analyses identify and highlight contexts where these strategies yield the most improvements.

Summary

We haven't generated a summary for this paper yet.

Github Logo Streamline Icon: https://streamlinehq.com