Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Optimizing PM2.5 Forecasting Accuracy with Hybrid Meta-Heuristic and Machine Learning Models (2407.01647v1)

Published 1 Jul 2024 in cs.NE, cs.AI, and cs.LG

Abstract: Timely alerts about hazardous air pollutants are crucial for public health. However, existing forecasting models often overlook key factors like baseline parameters and missing data, limiting their accuracy. This study introduces a hybrid approach to address these issues, focusing on forecasting hourly PM2.5 concentrations using Support Vector Regression (SVR). Meta-heuristic algorithms, Grey Wolf Optimization (GWO) and Particle Swarm Optimization (PSO), optimize SVR Hyper-parameters "C" and "Gamma" to enhance prediction accuracy. Evaluation metrics include R-squared (R2), Root Mean Square Error (RMSE), and Mean Absolute Error (MAE). Results show significant improvements with PSO-SVR (R2: 0.9401, RMSE: 0.2390, MAE: 0.1368) and GWO-SVR (R2: 0.9408, RMSE: 0.2376, MAE: 0.1373), indicating robust and accurate models suitable for similar research applications.

Citations (1)

Summary

We haven't generated a summary for this paper yet.