Papers
Topics
Authors
Recent
Search
2000 character limit reached

LASSI: An LLM-based Automated Self-Correcting Pipeline for Translating Parallel Scientific Codes

Published 30 Jun 2024 in cs.SE, cs.AI, cs.DC, and cs.PL | (2407.01638v2)

Abstract: This paper addresses the problem of providing a novel approach to sourcing significant training data for LLMs focused on science and engineering. In particular, a crucial challenge is sourcing parallel scientific codes in the ranges of millions to billions of codes. To tackle this problem, we propose an automated pipeline framework called LASSI, designed to translate between parallel programming languages by bootstrapping existing closed- or open-source LLMs. LASSI incorporates autonomous enhancement through self-correcting loops where errors encountered during the compilation and execution of generated code are fed back to the LLM through guided prompting for debugging and refactoring. We highlight the bi-directional translation of existing GPU benchmarks between OpenMP target offload and CUDA to validate LASSI. The results of evaluating LASSI with different application codes across four LLMs demonstrate the effectiveness of LASSI for generating executable parallel codes, with 80% of OpenMP to CUDA translations and 85% of CUDA to OpenMP translations producing the expected output. We also observe approximately 78% of OpenMP to CUDA translations and 62% of CUDA to OpenMP translations execute within 10% of or at a faster runtime than the original benchmark code in the same language.

Citations (1)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 3 tweets with 16 likes about this paper.