Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Leveraging Speaker Embeddings in End-to-End Neural Diarization for Two-Speaker Scenarios (2407.01317v1)

Published 1 Jul 2024 in cs.SD, cs.AI, and eess.AS

Abstract: End-to-end neural speaker diarization systems are able to address the speaker diarization task while effectively handling speech overlap. This work explores the incorporation of speaker information embeddings into the end-to-end systems to enhance the speaker discriminative capabilities, while maintaining their overlap handling strengths. To achieve this, we propose several methods for incorporating these embeddings along the acoustic features. Furthermore, we delve into an analysis of the correct handling of silence frames, the window length for extracting speaker embeddings and the transformer encoder size. The effectiveness of our proposed approach is thoroughly evaluated on the CallHome dataset for the two-speaker diarization task, with results that demonstrate a significant reduction in diarization error rates achieving a relative improvement of a 10.78% compared to the baseline end-to-end model.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)

Summary

We haven't generated a summary for this paper yet.