Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
110 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Cross-Modal Attention Alignment Network with Auxiliary Text Description for zero-shot sketch-based image retrieval (2407.00979v1)

Published 1 Jul 2024 in cs.CV

Abstract: In this paper, we study the problem of zero-shot sketch-based image retrieval (ZS-SBIR). The prior methods tackle the problem in a two-modality setting with only category labels or even no textual information involved. However, the growing prevalence of Large-scale pre-trained LLMs, which have demonstrated great knowledge learned from web-scale data, can provide us with an opportunity to conclude collective textual information. Our key innovation lies in the usage of text data as auxiliary information for images, thus leveraging the inherent zero-shot generalization ability that language offers. To this end, we propose an approach called Cross-Modal Attention Alignment Network with Auxiliary Text Description for zero-shot sketch-based image retrieval. The network consists of three components: (i) a Description Generation Module that generates textual descriptions for each training category by prompting an LLM with several interrogative sentences, (ii) a Feature Extraction Module that includes two ViTs for sketch and image data, a transformer for extracting tokens of sentences of each training category, finally (iii) a Cross-modal Alignment Module that exchanges the token features of both text-sketch and text-image using cross-attention mechanism, and align the tokens locally and globally. Extensive experiments on three benchmark datasets show our superior performances over the state-of-the-art ZS-SBIR methods.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (5)
  1. Hanwen Su (2 papers)
  2. Ge Song (13 papers)
  3. Kai Huang (146 papers)
  4. Jiyan Wang (2 papers)
  5. Ming Yang (289 papers)

Summary

We haven't generated a summary for this paper yet.