Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 152 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 119 tok/s Pro
Kimi K2 197 tok/s Pro
GPT OSS 120B 425 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

Varying Manifolds in Diffusion: From Time-varying Geometries to Visual Saliency (2406.18588v1)

Published 7 Jun 2024 in cs.CV and cs.LG

Abstract: Deep generative models learn the data distribution, which is concentrated on a low-dimensional manifold. The geometric analysis of distribution transformation provides a better understanding of data structure and enables a variety of applications. In this paper, we study the geometric properties of the diffusion model, whose forward diffusion process and reverse generation process construct a series of distributions on manifolds which vary over time. Our key contribution is the introduction of generation rate, which corresponds to the local deformation of manifold over time around an image component. We show that the generation rate is highly correlated with intuitive visual properties, such as visual saliency, of the image component. Further, we propose an efficient and differentiable scheme to estimate the generation rate for a given image component over time, giving rise to a generation curve. The differentiable nature of our scheme allows us to control the shape of the generation curve via optimization. Using different loss functions, our generation curve matching algorithm provides a unified framework for a range of image manipulation tasks, including semantic transfer, object removal, saliency manipulation, image blending, etc. We conduct comprehensive analytical evaluations to support our findings and evaluate our framework on various manipulation tasks. The results show that our method consistently leads to better manipulation results, compared to recent baselines.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.