Compact embeddings of Sobolev, Besov, and Triebel-Lizorkin spaces
Abstract: We establish necessary and sufficient conditions guaranteeing compactness of embeddings of fractional Sobolev spaces, Besov spaces, and Triebel-Lizorkin spaces, in the general context of quasi-metric-measure spaces. Although stated in the setting of quasi-metric spaces, the main results in this article are new, even in the metric setting. Moreover, by considering the more general category of quasi-metric spaces we are able to obtain these characterizations for optimal ranges of exponents that depend (quantitatively) on the geometric makeup of the underlying space.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.