Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 100 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 33 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 200 tok/s Pro
GPT OSS 120B 447 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Stochastic approximation method for kernel sliced average variance estimation (2406.15950v1)

Published 22 Jun 2024 in math.ST and stat.TH

Abstract: In this paper, we use the stochastic approximation method to estimate Sliced Average Variance Estimation (SAVE). This method is known for its efficiency in recursive estimation. Stochastic approximation is particularly effective for constructing recursive estimators and has been widely used in density estimation, regression, and semi-parametric models. We demonstrate that the resulting estimator is asymptotically normal and root n consistent. Through simulations conducted in the laboratory and applied to real data, we show that it is faster than the kernel method previously proposed.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube