Papers
Topics
Authors
Recent
2000 character limit reached

Continual Learning with Diffusion-based Generative Replay for Industrial Streaming Data (2406.15766v1)

Published 22 Jun 2024 in cs.LG

Abstract: The Industrial Internet of Things (IIoT) integrates interconnected sensors and devices to support industrial applications, but its dynamic environments pose challenges related to data drift. Considering the limited resources and the need to effectively adapt models to new data distributions, this paper introduces a Continual Learning (CL) approach, i.e., Distillation-based Self-Guidance (DSG), to address challenges presented by industrial streaming data via a novel generative replay mechanism. DSG utilizes knowledge distillation to transfer knowledge from the previous diffusion-based generator to the updated one, improving both the stability of the generator and the quality of reproduced data, thereby enhancing the mitigation of catastrophic forgetting. Experimental results on CWRU, DSA, and WISDM datasets demonstrate the effectiveness of DSG. DSG outperforms the state-of-the-art baseline in accuracy, demonstrating improvements ranging from 2.9% to 5.0% on key datasets, showcasing its potential for practical industrial applications.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.