Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
102 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Class-Prototype Conditional Diffusion Model with Gradient Projection for Continual Learning (2312.06710v3)

Published 10 Dec 2023 in cs.LG

Abstract: Mitigating catastrophic forgetting is a key hurdle in continual learning. Deep Generative Replay (GR) provides techniques focused on generating samples from prior tasks to enhance the model's memory capabilities using generative AI models ranging from Generative Adversarial Networks (GANs) to the more recent Diffusion Models (DMs). A major issue is the deterioration in the quality of generated data compared to the original, as the generator continuously self-learns from its outputs. This degradation can lead to the potential risk of catastrophic forgetting (CF) occurring in the classifier. To address this, we propose the Gradient Projection Class-Prototype Conditional Diffusion Model (GPPDM), a GR-based approach for continual learning that enhances image quality in generators and thus reduces the CF in classifiers. The cornerstone of GPPDM is a learnable class prototype that captures the core characteristics of images in a given class. This prototype, integrated into the diffusion model's denoising process, ensures the generation of high-quality images of the old tasks, hence reducing the risk of CF in classifiers. Moreover, to further mitigate the CF of diffusion models, we propose a gradient projection technique tailored for the cross-attention layer of diffusion models to maximally maintain and preserve the representations of old task data in the current task as close as possible to their representations when they first arrived. Our empirical studies on diverse datasets demonstrate that our proposed method significantly outperforms existing state-of-the-art models, highlighting its satisfactory ability to preserve image quality and enhance the model's memory retention.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (6)
  1. Khanh Doan (5 papers)
  2. Quyen Tran (19 papers)
  3. Tuan Nguyen (41 papers)
  4. Dinh Phung (147 papers)
  5. Trung Le (94 papers)
  6. Tung Lam Tran (1 paper)
Citations (2)

Summary

We haven't generated a summary for this paper yet.