Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
121 tokens/sec
GPT-4o
9 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

ICLEval: Evaluating In-Context Learning Ability of Large Language Models (2406.14955v2)

Published 21 Jun 2024 in cs.CL

Abstract: In-Context Learning (ICL) is a critical capability of LLMs as it empowers them to comprehend and reason across interconnected inputs. Evaluating the ICL ability of LLMs can enhance their utilization and deepen our understanding of how this ability is acquired at the training stage. However, existing evaluation frameworks primarily focus on language abilities and knowledge, often overlooking the assessment of ICL ability. In this work, we introduce the ICLEval benchmark to evaluate the ICL abilities of LLMs, which encompasses two key sub-abilities: exact copying and rule learning. Through the ICLEval benchmark, we demonstrate that ICL ability is universally present in different LLMs, and model size is not the sole determinant of ICL efficacy. Surprisingly, we observe that ICL abilities, particularly copying, develop early in the pretraining process and stabilize afterward. Our source codes and benchmark are released at https://github.com/yiye3/ICLEval.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Github Logo Streamline Icon: https://streamlinehq.com

GitHub

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets