Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Trusting Semantic Segmentation Networks (2406.14201v1)

Published 20 Jun 2024 in cs.CV

Abstract: Semantic segmentation has become an important task in computer vision with the growth of self-driving cars, medical image segmentation, etc. Although current models provide excellent results, they are still far from perfect and while there has been significant work in trying to improve the performance, both with respect to accuracy and speed of segmentation, there has been little work which analyses the failure cases of such systems. In this work, we aim to provide an analysis of how segmentation fails across different models and consider the question of whether these can be predicted reasonably at test time. To do so, we explore existing uncertainty-based metrics and see how well they correlate with misclassifications, allowing us to define the degree of trust we put in the output of our prediction models. Through several experiments on three different models across three datasets, we show that simple measures such as entropy can be used to capture misclassification with high recall rates.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Samik Some (2 papers)
  2. Vinay P. Namboodiri (85 papers)

Summary

We haven't generated a summary for this paper yet.