Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
129 tokens/sec
GPT-4o
28 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

CohortNet: Empowering Cohort Discovery for Interpretable Healthcare Analytics (2406.14015v1)

Published 20 Jun 2024 in cs.LG

Abstract: Cohort studies are of significant importance in the field of healthcare analysis. However, existing methods typically involve manual, labor-intensive, and expert-driven pattern definitions or rely on simplistic clustering techniques that lack medical relevance. Automating cohort studies with interpretable patterns has great potential to facilitate healthcare analysis but remains an unmet need in prior research efforts. In this paper, we propose a cohort auto-discovery model, CohortNet, for interpretable healthcare analysis, focusing on the effective identification, representation, and exploitation of cohorts characterized by medically meaningful patterns. CohortNet initially learns fine-grained patient representations by separately processing each feature, considering both individual feature trends and feature interactions at each time step. Subsequently, it classifies each feature into distinct states and employs a heuristic cohort exploration strategy to effectively discover substantial cohorts with concrete patterns. For each identified cohort, it learns comprehensive cohort representations with credible evidence through associated patient retrieval. Ultimately, given a new patient, CohortNet can leverage relevant cohorts with distinguished importance, which can provide a more holistic understanding of the patient's conditions. Extensive experiments on three real-world datasets demonstrate that it consistently outperforms state-of-the-art approaches and offers interpretable insights from diverse perspectives in a top-down fashion.

Summary

We haven't generated a summary for this paper yet.