Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
102 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

The Elusive Pursuit of Replicating PATE-GAN: Benchmarking, Auditing, Debugging (2406.13985v1)

Published 20 Jun 2024 in cs.LG and cs.CR

Abstract: Synthetic data created by differentially private (DP) generative models is increasingly used in real-world settings. In this context, PATE-GAN has emerged as a popular algorithm, combining Generative Adversarial Networks (GANs) with the private training approach of PATE (Private Aggregation of Teacher Ensembles). In this paper, we analyze and benchmark six open-source PATE-GAN implementations, including three by (a subset of) the original authors. First, we shed light on architecture deviations and empirically demonstrate that none replicate the utility performance reported in the original paper. Then, we present an in-depth privacy evaluation, including DP auditing, showing that all implementations leak more privacy than intended and uncovering 17 privacy violations and 5 other bugs. Our codebase is available from https://github.com/spalabucr/pategan-audit.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
Citations (2)

Summary

We haven't generated a summary for this paper yet.