Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
194 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

CoDreamer: Communication-Based Decentralised World Models (2406.13600v1)

Published 19 Jun 2024 in cs.AI

Abstract: Sample efficiency is a critical challenge in reinforcement learning. Model-based RL has emerged as a solution, but its application has largely been confined to single-agent scenarios. In this work, we introduce CoDreamer, an extension of the Dreamer algorithm for multi-agent environments. CoDreamer leverages Graph Neural Networks for a two-level communication system to tackle challenges such as partial observability and inter-agent cooperation. Communication is separately utilised within the learned world models and within the learned policies of each agent to enhance modelling and task-solving. We show that CoDreamer offers greater expressive power than a naive application of Dreamer, and we demonstrate its superiority over baseline methods across various multi-agent environments.

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com