Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 79 tok/s
Gemini 2.5 Pro 60 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 117 tok/s Pro
Kimi K2 201 tok/s Pro
GPT OSS 120B 466 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Enumeration of maps with tight boundaries and the Zhukovsky transformation (2406.13528v1)

Published 19 Jun 2024 in math.CO, math-ph, math.MP, and math.PR

Abstract: We consider maps with tight boundaries, i.e. maps whose boundaries have minimal length in their homotopy class, and discuss the properties of their generating functions $T{(g)}_{\ell_1,\ldots,\ell_n}$ for fixed genus $g$ and prescribed boundary lengths $\ell_1,\ldots,\ell_n$, with a control on the degrees of inner faces. We find that these series appear as coefficients in the expansion of $\omega{(g)}_n(z_1,\ldots,z_n)$, a fundamental quantity in the Eynard-Orantin theory of topological recursion, thereby providing a combinatorial interpretation of the Zhukovsky transformation used in this context. This interpretation results from the so-called trumpet decomposition of maps with arbitrary boundaries. In the planar bipartite case, we obtain a fully explicit formula for $T{(0)}_{2\ell_1,\ldots,2\ell_n}$ from the Collet-Fusy formula. We also find recursion relations satisfied by $T{(g)}_{\ell_1,\ldots,\ell_n}$, which consist in adding an extra tight boundary, keeping the genus $g$ fixed. Building on a result of Norbury and Scott, we show that $T{(g)}_{\ell_1,\ldots,\ell_n}$ is equal to a parity-dependent quasi-polynomial in $\ell_12,\ldots,\ell_n2$ times a simple power of the basic generating function $R$. In passing, we provide a bijective derivation in the case $(g,n)=(0,3)$, generalizing a recent construction of ours to the non bipartite case.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 post and received 0 likes.