Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 78 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 24 tok/s Pro
GPT-5 High 26 tok/s Pro
GPT-4o 120 tok/s Pro
Kimi K2 193 tok/s Pro
GPT OSS 120B 459 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

On quasi-polynomials counting planar tight maps (2203.14796v2)

Published 28 Mar 2022 in math.CO

Abstract: A tight map is a map with some of its vertices marked, such that every vertex of degree $1$ is marked. We give an explicit formula for the number $N_{0,n}(d_1,\ldots,d_n)$ of planar tight maps with $n$ labeled faces of prescribed degrees $d_1,\ldots,d_n$, where a marked vertex is seen as a face of degree $0$. It is a quasi-polynomial in $(d_1,\ldots,d_n)$, as shown previously by Norbury. Our derivation is bijective and based on the slice decomposition of planar maps. In the non-bipartite case, we also rely on enumeration results for two-type forests. We discuss the connection with the enumeration of non necessarily tight maps. In particular, we provide a generalization of Tutte's classical slicings formula to all non-bipartite maps.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.