Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Safe and Non-Conservative Trajectory Planning for Autonomous Driving Handling Unanticipated Behaviors of Traffic Participants (2406.13396v2)

Published 19 Jun 2024 in eess.SY and cs.SY

Abstract: Trajectory planning for autonomous driving is challenging because the unknown future motion of traffic participants must be accounted for, yielding large uncertainty. Stochastic Model Predictive Control (SMPC)-based planners provide non-conservative planning, but do not rule out a (small) probability of collision. We propose a control scheme that yields an efficient trajectory based on SMPC when the traffic scenario allows, still avoiding that the vehicle causes collisions with traffic participants if the latter move according to the prediction assumptions. If some traffic participant does not behave as anticipated, no safety guarantee can be given. Then, our approach yields a trajectory which minimizes the probability of collision, using Constraint Violation Probability Minimization techniques. Our algorithm can also be adapted to minimize the anticipated harm caused by a collision. We provide a thorough discussion of the benefits of our novel control scheme and compare it to a previous approach through numerical simulations from the CommonRoad database.

Citations (2)

Summary

We haven't generated a summary for this paper yet.