Papers
Topics
Authors
Recent
2000 character limit reached

RMF: A Risk Measurement Framework for Machine Learning Models

Published 15 Jun 2024 in cs.CR, cs.AI, and cs.LG | (2406.12929v1)

Abstract: Machine learning (ML) models are used in many safety- and security-critical applications nowadays. It is therefore important to measure the security of a system that uses ML as a component. This paper focuses on the field of ML, particularly the security of autonomous vehicles. For this purpose, a technical framework will be described, implemented, and evaluated in a case study. Based on ISO/IEC 27004:2016, risk indicators are utilized to measure and evaluate the extent of damage and the effort required by an attacker. It is not possible, however, to determine a single risk value that represents the attacker's effort. Therefore, four different values must be interpreted individually.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 2 tweets with 0 likes about this paper.