Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
121 tokens/sec
GPT-4o
9 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Federated Learning with a Single Shared Image (2406.12658v1)

Published 18 Jun 2024 in cs.CV and cs.LG

Abstract: Federated Learning (FL) enables multiple machines to collaboratively train a machine learning model without sharing of private training data. Yet, especially for heterogeneous models, a key bottleneck remains the transfer of knowledge gained from each client model with the server. One popular method, FedDF, uses distillation to tackle this task with the use of a common, shared dataset on which predictions are exchanged. However, in many contexts such a dataset might be difficult to acquire due to privacy and the clients might not allow for storage of a large shared dataset. To this end, in this paper, we introduce a new method that improves this knowledge distillation method to only rely on a single shared image between clients and server. In particular, we propose a novel adaptive dataset pruning algorithm that selects the most informative crops generated from only a single image. With this, we show that federated learning with distillation under a limited shared dataset budget works better by using a single image compared to multiple individual ones. Finally, we extend our approach to allow for training heterogeneous client architectures by incorporating a non-uniform distillation schedule and client-model mirroring on the server side.

Summary

We haven't generated a summary for this paper yet.