Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 165 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 41 tok/s Pro
GPT-5 High 33 tok/s Pro
GPT-4o 124 tok/s Pro
Kimi K2 193 tok/s Pro
GPT OSS 120B 443 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Polygonal Faber-Krahn inequality: Local minimality via validated computing (2406.11575v1)

Published 17 Jun 2024 in math.NA, cs.NA, and math.OC

Abstract: The main result of the paper shows that the regular $n$-gon is a local minimizer for the first Dirichlet-Laplace eigenvalue among $n$-gons having fixed area for $n \in {5,6}$. The eigenvalue is seen as a function of the coordinates of the vertices in $\Bbb R{2n}$. Relying on fine regularity results of the first eigenfunction in a convex polygon, an explicit a priori estimate is given for the eigenvalues of the Hessian matrix associated to the discrete problem, whose coefficients involve the solutions of some Poisson equations with singular right hand sides. The a priori estimates, in conjunction with certified finite element approximations of these singular PDEs imply the local minimality for $n \in {5,6}$. All computations, including the finite element computations, are realized using interval arithmetic.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.