On the Polygonal Faber-Krahn Inequality (2203.16409v1)
Abstract: It has been conjectured by P\'{o}lya and Szeg\"{o} seventy years ago that the planar set which minimizes the first eigenvalue of the Dirichlet-Laplace operator among polygons with $n$ sides and fixed area is the regular polygon. Despite its apparent simplicity, this result has only been proved for triangles and quadrilaterals. In this paper we prove that for each $n \ge 5$ the proof of the conjecture can be reduced to a finite number of certified numerical computations. Moreover, the local minimality of the regular polygon can be reduced to a single numerical computation. For $n=5, 6,7, 8$ we perform this computation and certify the numerical approximation by finite elements, up to machine errors.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.